Generalized mean for robust principal component analysis
نویسندگان
چکیده
منابع مشابه
Generalized mean for robust principal component analysis
In this paper, we propose a robust principal component analysis (PCA) to overcome the problem that PCA is prone to outliers included in the training set. Different from the other alternatives which commonly replace L2-norm by other distance measures, the proposed method alleviates the negative effect of outliers using the characteristic of the generalized mean keeping the use of the Euclidean d...
متن کاملOptimal Mean Robust Principal Component Analysis
Principal Component Analysis (PCA) is the most widely used unsupervised dimensionality reduction approach. In recent research, several robust PCA algorithms were presented to enhance the robustness of PCA model. However, the existing robust PCA methods incorrectly center the data using the `2-norm distance to calculate the mean, which actually is not the optimal mean due to the `1-norm used in ...
متن کاملRobust Kernel Principal Component Analysis
Kernel Principal Component Analysis (KPCA) is a popular generalization of linear PCA that allows non-linear feature extraction. In KPCA, data in the input space is mapped to higher (usually) dimensional feature space where the data can be linearly modeled. The feature space is typically induced implicitly by a kernel function, and linear PCA in the feature space is performed via the kernel tric...
متن کاملRobust Stochastic Principal Component Analysis
We consider the problem of finding lower dimensional subspaces in the presence of outliers and noise in the online setting. In particular, we extend previous batch formulations of robust PCA to the stochastic setting with minimal storage requirements and runtime complexity. We introduce three novel stochastic approximation algorithms for robust PCA that are extensions of standard algorithms for...
متن کاملROBUST PRINCIPAL COMPONENT ANALYSIS? By
This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition
سال: 2016
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2016.01.002